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Abstract of the research project: 

Quantum computers promise to be a revolutionary solution to fulfill the increasing need for high-

performance computing, and quantum computing has been identified as a key intervention area in the 

“Programma Nazionale per la Ricerca 2021-27”. Determining the problems on which quantum computers 

can provide major advantages with respect to classical computers is the main theoretical problem of 

quantum computing and constitutes the challenge that LeQun addresses. 

The most promising family of quantum algorithms that can be implemented on the forthcoming generation 

of quantum computers are variational quantum algorithms, also called quantum neural networks. Despite 

the promises, there is no problem of practical interest yet where quantum neural networks have a provable 

advantage over the best classical algorithms. A thorough theoretical study of the trainability, expressibility 

and generalization properties of quantum neural networks and of their potential advantages with respect to 

classical computers constitutes the main theoretical challenge of quantum machine learning. 

LeQun will tackle this extremely ambitious challenge through the following objectives: 

O1: 

• To analytically characterize the probability distribution of the functions generated by trained 

quantum neural networks and determine their trainability and generalization performances. 

• To study the training stability against imperfect outcomes of quantum measurements and the query 

complexity of the entire training process, namely the number of measurements that must be 

performed to achieve the desired accuracy. 

O2: To identify the architectures of quantum neural networks that have the potential to provide major 

advantages with respect to classical computers and to perform a proof-of-principle validation of the 

advantages of the identified architectures using real quantum devices and simulators. 

LeQun will tackle the challenge with an interdisciplinary approach that connects quantum machine learning 

with probability theory and quantum many-body physics. The strategy of LeQun is based on the recent 

breakthrough results in classical machine learning stating that in the mean-field limit of infinite width of the 

hidden layers, trained deep neural networks are equivalent to Gaussian processes. These results explained 

the unreasonably good performances of deep neural networks, and LeQun will generalize them to the 

quantum setting. 

LeQun will constitute a successful example of interdisciplinary research and will foster a cross-fertilization 

among quantum computing, probability theory and many-body quantum physics. The results of LeQun will 

be highly relevant for all the researchers working on quantum computing and machine learning both in 

industry and academia, thus contributing to creating value for the whole society, and its results will constitute 

a fundamental contribution to the main challenge of quantum computing. 

Composizione dei membri della commissione dell’eventuale Bando 



La valutazione comparativa dei candidati sarà effettuata da una Commissione giudicatrice formata da: - 

Prof. Giacomo De Palma (Presidente) 

Prof. Dario Trevisan (segretario verbalizzante) 

Prof. Leonardo Banchi (componente) 

Prof Daniele Tantari (eventuale membro supplente) 

 

Requisiti di ammissione 

Alle selezioni sono ammessi a partecipare i candidati, anche cittadini di Paesi non appartenenti alla Unione 

Europea, in possesso di adeguato curriculum scientifico professionale e di: 

- Dottorato di ricerca in matematica, fisica, informatica o titolo equivalente corredato da un’adeguata 

produzione scientifica conseguito in Italia o all’estero; 

- Laurea magistrale/specialistica o vecchio ordinamento o titolo equivalente in nessun ambito specifico con 

adeguato curriculum scientifico-professionale.  

- è previsto un colloquio; 

- in caso di colloquio indicare la modalità: online; 

- è prevista una valutazione di competenza della lingua inglese 

 

Piano di Attività 

1. Team composition 

The team will be composed by the PI Prof. Giacomo De Palma (UniBo), the unit leaders Prof. Leonardo 

Banchi (UniFi) and Prof. Dario Trevisan (UniPi), postdoc 1 in the UniBo unit jointly supervised by GdP and 

DT, and postdoc 2 in the UniFi unit supervised by LB. 

2. Work plan 

The objectives O1 and O2 will be addressed by WP1 and WP2, respectively. Each WP is divided into sub-

WPs, which consist of a mathematical and a physical part. 

WP1 

In WP1, we will characterize the probability distribution of the functions generated by trained quantum 

neural networks. WP1 consists of the sub-packages WP1.1 and WP1.2. 

WP1.1 [months 1-8] 

In WP1.1, we will characterize the probability distribution of the functions generated by quantum neural 

networks with random parameters. WP1.1 consists of a mathematical part (WP1.1a) and a physical part 

(WP1.1b), which will be carried out in parallel. 

 

WP1.1a [GdP, DT, LB, postdoc 1] 



WP1.1a will consist in proving that the output generated by quantum neural networks with random 

parameters behave as Gaussian processes in the mean-field limit of an input made by infinitely many iid 

copies of a given quantum state. Depending on whether the input is classical or quantum, we will consider 

quantum neural networks that have as input many iid copies of either a quantum state that encodes the 

classical input or the quantum state to be classified. Physical intuition suggests that the dynamics of the 

network in the aforementioned limit is described by a mean-field theory. We will provide a rigorous proof 

for this intuition by generalizing to the quantum setting the proof of [Lee 18], which relies on a central limit 

theorem for arrays of weakly dependent random variables. Our main strategy will be to generalize the 

techniques in the proof of the quantum Berry-Esseen theorem of [Brandao 15]. We will quantify the 

goodness of the mean-field approximation through the quantum Wasserstein distance for qubits of [De 

Palma 21]. We will also consider alternative routes, based on later proofs of the classical result, relying on 

direct use of characteristic functions or explicit computations of moments [Bracale 20]. 

WP1.1b [GdP, LB, postdoc 2] 

The general aim of WP1.1b is to find and numerically verify physics-inspired methods to design quantum 

neural networks that admit a mean-field treatment. We will consider many iid copies of the initial state and 

use second quantization to describe its evolution. By introducing ancillary modes, it is possible to use the 

second-quantization formalism even when the quantum neural network is not permutationally invariant 

[Banchi 17]. In this language, the quantum neural network couples all the different copies together and can 

be described by a Hamiltonian with quartic interactions in the bosonic creation and annihilation operators. 

These Hamiltonians are routinely studied in the quantum many-body physics literature within mean-field 

methods [Bender 03]. We will study the evolution of the Hamiltonian parameters via gradient descent, 

express the gradient using integrals over time evolutions [Banchi 21b] and then perform time-dependent 

mean field approximations (a la Hartree-Fock-Bogoliubov) to formally approximate the resulting 

expressions. Furthermore, we will verify the applicability of such approximations through proof-of-principle 

numerical experiments. 

WP1.2 [months 9-16] 

In WP1.2, we will extend the results of WP1.1 to trained quantum neural networks. WP1.2 consists of a 

mathematical part (WP1.2a) and a physical part (WP1.2b), which will be carried out in parallel. 

WP1.2a [GdP, DT, postdoc 1] 

WP1.2a will consist in extending to trained quantum neural networks the results of WP1.1a. We propose as 

a strategy to generalize to the quantum setting the proof of [Lee 20] of the equivalence between Gaussian 

processes and trained deep neural networks. The idea underlying the result of [Lee 20] is that in the limit of 

infinite width of the hidden layers, the training of the network can be described by the linear model coming 

from the first-order Taylor expansion in the parameters with respect to their initialization values. This linear 

model is governed by the neural tangent kernel, which is given by the inner products between the 

gradients of the generated function with respect to the parameters. The neural tangent kernel is constant 

over most of the parameter space and does not change during training. We will generalize this proof to 

quantum neural networks building on the results of [Abedi 22], which provides bounds to the 

approximation error of the linear model for the training of geometrically local quantum circuits. We will 

define a quantum counterpart of the neural tangent kernel and prove that it is constant over most of the 

parameter space and does not change during training. This result will imply that trained quantum neural 

networks are equivalent to a linear model which can be solved analytically and behave as Gaussian 

processes. Furthermore, the quantum neural tangent kernel will allow us to determine the mean and the 

covariance of the function generated by the trained network in terms of the training set and of the cost 

function. 



WP1.2b [GdP, LB, postdoc 2] 

In WP1.2b, we will test the equivalence between quantum neural networks and Gaussian processes with 

numerical experiments and stability analyses. We will study how imperfect estimations of the gradient 

affect the kernel of the Gaussian process. Since the gradient is reconstructed from measurements on a 

quantum device, we will study how the number of measurements scales as a function of the number of 

qubits, of the circuit depth and of the number of interactions in the Hamiltonian describing the neural 

network. We will generalize the method from [Banchi 21b], which consists in finding bounds on the 

variance of the gradient estimator and then use concentration inequalities to bound the error. Moreover, 

we will perform extensive numerical simulations with classical datasets that are publicly available. We will 

study different encodings of the classical bits into quantum states and verify when the Gaussian-process 

approximation is valid. We expect that the encoding will not play a significant role in the infinite-width 

limit, yet for finite width there may be preferred choices. We will try encodings into different orthogonal 

quantum states and encoding unitary operators whose parameters depend variationally on the classical 

input. Finally, we will study the generalization properties of trained quantum neural networks and calculate 

how the von Neumann and the Rényi entropies change after each layer, in order to verify the predicted link 

between generalization and coarse graining of irrelevant information [Banchi 21a]. 

WP2 [months 17-24] 

In WP2, we will identify the architectures of quantum neural networks that have the potential to provide 

major advantages with respect to classical computers. WP2 consists of a mathematical part (WP2a) and a 

physical part (WP2b), which will be carried out in parallel. 

WP2a [GdP, DT, postdoc 1] 

WP2a consists in analyzing the performances of quantum neural networks and determining which 

architectures have the potential to outperform classical computers. We will identify the promising 

architectures through the following criteria: 

* The associated quantum neural tangent kernel must be hard to compute on a classical computer as the 

kernels considered in [Havlíček 19], such that the behavior of the network is hard to simulate. We will 

check this property by directly inspecting the expression for the quantum neural tangent kernel that we will 

get in WP1. 

* The training time must scale at most polynomially with the size of the input, such that the training can be 

completed in a realistic time. 

* The probably approximately correct Bayesian generalization bounds [Seeger 02] applied to the associated 

Gaussian process must yield good generalization properties for the quantum neural network. 

WP2b [GdP, LB, postdoc 2] 

Quantum speed-ups in machine learning are highly dependent on the dataset [Liu 21]. We will look for 

quantum advantage in a physically motivated problem: Classifying phases of matter. We will start by first 

studying the quantum phase recognition problem with integrable spin chains that can be exactly solved 

after a Jordan-Wigner transformation [Banchi 21a] and then move on to study topological phases for which 

no efficient classical methods exist [Cong 19]. We expect to gain from the integrable case the necessary 

experience to construct optimal quantum neural network architectures. We will then apply our experience 

to machine-learning problems with either classical or quantum input and that are widely believed to be 

hard for conventional methods. Finally, we will study the robustness of quantum classifiers with respect to 

noisy outcomes from quantum measurements and perform proof-of-principle experiments on real devices 

using IBM Quantum Experience and Amazon Braket cloud services, already used by LB et al. in [Gentini 21]. 
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